
www.manaraa.com

Authenticated Data Structures, Generically

Andrew Miller, Michael Hicks, Jonathan Katz, and Elaine Shi
University of Maryland, College Park, USA

Abstract
An authenticated data structure (ADS) is a data structure whose
operations can be carried out by an untrusted prover, the results
of which a verifier can efficiently check as authentic. This is done
by having the prover produce a compact proof that the verifier can
check along with each query result. ADSs thus support outsourcing
data maintenance and processing tasks to untrusted servers with-
out loss of integrity. Past work on ADSs has focused on partic-
ular data structures (or limited classes of data structures), one at
a time, often with support only for particular operations. This pa-
per presents a generic method, using a simple extension to a ML-
like functional programming language we call λ• (lambda-auth),
with which one can program authenticated operations over any data
structure constructed from standard type constructors, including re-
cursive types, sums, and products. The programmer writes the data
structure largely as usual; it can then be compiled to code to be run
by the prover and verifier. Using a formalization of λ• we prove
that all well-typed λ• programs result in code that is secure under
the standard cryptographic assumption of collision-resistant hash
functions. We have implemented our approach as an extension to
the OCaml compiler, and have used it to produce authenticated ver-
sions of many interesting data structures including binary search
trees, red-black trees, skip lists, and more. Performance experi-
ments show that our approach is efficient, giving up little compared
to the hand-optimized data structures developed previously.

1. Introduction
Consider a data provider who would like to allow third parties
to mirror its data, providing a query interface over it to clients.
The data provider wants to assure clients that mirrors will answer
queries over the data truthfully, even if the mirrors (or another party
that compromises the mirror) have an incentive to lie. As examples,
the data provider might be providing stock market data, a certificate
revocation list, the Tor relay list, or the state of the current Bitcoin
ledger [18].

Such a scenario can be supported using authenticated data
structures (ADS) [20, 4, 27]. ADS computations involve two roles,
the prover and the verifier. The mirror plays the role of the prover,
storing the data of interest and answering queries about it. The
client plays the role of the verifier, posing queries to the prover
and verifying that the returned results are authentic. At any point
in time, the verifier holds only a short digest that can be viewed as
summarizing the current contents of the data; an authentic copy of
the digest is provided by the data owner. When the verifier sends
the prover a query, the prover computes the result and returns it
along with a proof that the returned result is correct; both the proof
and the time to produce it are linear in the time to compute the
query result. The verifier can attempt to verify the proof using its
current digest (taking time linear in the size of the proof), and
will accept the returned result only if the proof verifies. The data
owner may also have the capability to update its data stored at the

prover; in this case, the result includes an updated digest and the
proof shows that this updated digest was computed correctly. ADS
computations have two properties. Correctness implies that when
both parties execute the protocol correctly, the proofs given by the
prover verify correctly and the verifier always receives the correct
result. Security1 implies that a computationally bounded, malicious
prover cannot fool the verifier into accepting an incorrect result.

Authenticated data structures can be traced back to Merkle [15];
the well-known Merkle hash tree can be viewed as providing an
authenticated version of a bounded-length array. More recently, au-
thenticated versions of data structures as diverse as sets [19, 23],
dictionaries [10, 1], range trees [13], graphs [11], skip lists [10, 9],
B-trees [17], hash trees [21], and more [12] have been proposed. In
each of these cases, the design of the data structure, the supporting
operations, and how they can be proved authentic have been recon-
sidered from scratch, involving a new, potentially tricky proof of
security. Arguably, this state of affairs has hindered the advance-
ment of new data structure designs, or customizations of existing
designs, as previous ideas are not easily reused or reapplied. We
believe that, motivated by cloud computing, ADSs will make their
way into systems for secure computation more often if they become
easier to build.

This paper presents λ• (pronounced “lambda auth”), a language
for programming authenticated data structures. λ• represents the
first generic approach to building dynamic authenticated data struc-
tures with provable guarantees. The key observation underlying
λ•’s design is that, whatever the data structure or operation, the
computations performed by the prover and verifier can be made
structurally the same: the prover can construct the proof by per-
forming work at key points while executing the query, and the veri-
fier can check that proof by using it to “replay” the query and check
at each key point that the computation is self-consistent.
λ• implements this idea using what we call authenticated types,

written •τ , with coercions auth and unauth for introducing and
eliminating values of authenticated type. Using standard functional
programming features, the programmer writes her ADS’s data type
definition and its corresponding operations (i.e., queries and up-
dates) to use authenticated types. For example, as we show later
in the paper, the programmer could write an efficient authenticated
binary search tree using the (OCaml-style) type definition type bst
= Tip | Bin of •bst × int × •bst along with essentially standard
routines for querying and insertion. Then, given such a program,
the λ• compiler produces code for both a prover and a verifier. The
prover’s code augments each of a program’s routines to generate
a proof along with the answer, whereas each verifier routine veri-
fies a proof produced by its counterpart at the prover. These proofs
consist of a stream of what we call shallow projections of the data
the prover visits while running its routine: the prover’s code adds
to this stream at each unauth call, while the verifier’s code draws

1 This property is sometimes called soundness but we eschew this term to
avoid confusion with its standard usage in programming languages.

1 2013/7/14

www.manaraa.com

from the stream at the corresponding call, checking for consistency.
We give a more detailed overview of how this approach works, and
how authenticated types are represented, in Section 2. Importantly,
as we show in Sections 3 and 4, any well-typed program written in
λ• compiles to a prover and verifier which are correct and secure,
where security holds under the standard cryptographic assumption
of collision-resistant hash functions.2

λ• provides two key benefits over prior work. First, it is ex-
tremely flexible. We can use λ• to implement any dynamic data
structure, both queries and updates, expressible using ML-style
data types (involving sums, products, and recursive types). Our
theoretical development, though not our implementation, also sup-
ports authenticated functions. Previous work by Martel et al. [14]
can also be used to build DAG-oriented ADSs, but they support
only queries and not (incremental) updates, and (less importantly)
require the data structure have a single root and do not support
authenticated functions. λ•’s flexibility does not compromise its
performance. To the best of our knowledge the asymptotic perfor-
mance of every prior ADS construction from the literature based on
collision-resistant hashing can be matched by λ•. We have imple-
mented an optimizing λ• compiler as an extension to the OCaml
compiler (described in Section 5), and using it we have imple-
mented Merkle trees, authenticated binary search trees, red-black+
trees, skip lists, and planar separator trees, and improvements to
standard Bitcoin data structures. Experiments given in Section 6
confirm the expected asymptotic performance of λ• ADSs, show
the benefit of the two compiler optimizations we implemented
(which exploit space/time tradeoffs), and demonstrate the perfor-
mance of λ• ADSs is competitive with hand-rolled versions.
λ•’s second main benefit is ease of use. We find that it is

relatively simple to construct an ADS using λ•: just write the
standard data structure in a purely functional style, and sprinkle
in uses of authenticated types; we give a flavor for this in the
next section. Pleasantly, there is no need for the ADS designer
to prove anything: Assuming the resulting program type checks,
the programmer is assured that the produced prover and verifier
code enjoy both correctness and security. λ• ADSs can be freely
composed and customized just as one might expect with normal
data structures, a fact which we hope will make them more readily
deployable. All of this is in contrast to the state of practice with
ADSs today, summarized in Section 7, which tends to favor hand-
rolled versions that are hard to build, customize, and compose.

At present, λ• has two main limitations. First, it uses collision-
resistant hashes as its basis for implementing authenticated types.
While this is by far the most common approach to building ADSs,
more recent work [23, 22] shows that advanced cryptographic
primitives can sometimes provide efficiency gains. Second, while
all its ADSs are correct and secure, λ• provides no guarantees that
a particular program will be (space-)efficient; it is up to the pro-
grammer to use authenticated types wisely. In the limit, the pro-
grammer could leave out authenticated types entirely, with the re-
sult that the verifier would have to store the entire data structure, not
its digest, and essentially duplicate the prover’s computation. While
we believe that efficiency is reasonably straightforward to attain in
general—certainly simpler than designing and proving correctness
and security of an ADS from scratch—an interesting direction is to
automate the construction of efficient representations.

In summary, this paper makes the following contributions:

1. We present λ•, a purely functional language in which one can
write a rich array of authenticated data structures using a novel
feature we call authenticated types.

2 Informally, hash is a collision-resistant hash function if it is computation-
ally infeasible to find distinct inputs x, x′ such that hash(x) = hash(x′).

π =

h2 = hash(h4,h5)
::

str1, h4
h4 = hash(str1)

str2, h5
h5 = hash(str2)

str3, h6
h6 = hash(str3)

str4, h7
h7 = hash(str4)

h3 = hash(h6,h7)

h1 = hash(h2,h3)

N0,3 = h7

N1,0 = h2

N2,0:

N1,0:

N0,0: N0,1: N0,2: N0,3:

N1,1:

str3 @ N0,2 ::

Figure 1. A Merkle tree and proof π for fetch(2) describing the
highlighted path.

2. We formalize the semantics and type rules for λ• and prove
that all well-typed λ• programs produce ADS protocols that
are both correct and secure.

3. We have implemented λ• as an extension to the OCaml com-
piler and implemented a variety of existing and new ADSs,
showing good asymptotic performance that is competitive with
hand-rolled implementations. Our code will be made freely
available and is included in the supplemental material.

2. Overview
This section presents an overview of our approach. We begin by
describing Merkle trees, the canonical example of an authenticated
data structure. Then we give a flavor for λ• by showing how we can
use it to implement Merkle trees. We conclude with a discussion of
the flexibility and ease-of-use benefits of using λ• to write efficient
authenticated data structures.

2.1 Background: Merkle trees
The canonical example of an ADS is a Merkle tree [16], which is
the authenticated version of a full binary tree with data associated
with the leaves but not the interior nodes. A Merkle tree of height
h can represent an array of n = 2h−1 elements, x0, ..., xn−1. Each
leaf node is coupled with a digest that consists of the hash of the
associated element, while each internal node contains a digest that
is the hash of the concatenation of the digests of its two children. A
depiction of a Merkle tree for h = 2 is given in Figure 1. Each leaf
is associated with a string str1, str2, etc. Each node is numbered
according to its position in the tree, with x, y indicating x as the
row and y as the column.

The canonical Merkle tree query fetches the value xi at index
i ∈ [0, n − 1]. When thus queried, the prover (call it P) returns
the value xi along with the set of digests π needed to compute
the root digest. The verifier (call it V) keeps a copy of the root
digest itself, and checks the proof by recomputing this digest from
the proof and make sure the two match. Figure 1 shows the proof
π for a fetch at position i = 2 (i.e., the leaf at position N0, 2).
Verification proceeds bottom up: V computes the hash of str3,
which is h6, and concatenates that with the hash h7 provided in π.
It then concatenates these two and takes the hash to compute what
should be the digest for node N1, 1, i.e., h3. Then it concatenates
h2, the hash for N1, 0 provided in π, with its computed digest for
N1, 1 and hashes the result—this should be the digest of the root of
the tree. It then confirms this computed digest equals h1, the digest
it stores for the whole tree.

Performance analysis. Because the tree is perfectly balanced, the
size of the proof is always log2 n; additionally the computational
cost for each of P and V is log2 n. The overall size of the data
structure stored by P isO(n), whereas V at no point requires more
than a constant amount of storage or memory. In particular, V only
stores a constant-sized digest of the tree between fetch operations,
and because P produces a proof consisting of a list of (constant-
sized) hashes, P can stream these hashes to V as they are produced,

2 2013/7/14

www.manaraa.com

type tree = Tip of string | Bin of •tree × •tree
type bit = L | R
let rec fetch (idx:bit list) (t:•tree) : string =

match idx, unauth t with
| [], Tip a → a
| L :: idx, Bin(l,) → fetch idx l
| R :: idx, Bin(,r) → fetch idx r

Figure 2. Merkle trees in λ•. The tree is assumed to be complete,
i.e., with a power-of-two number of leaves.

effectively pipelining its execution with that of V . For this reason,
we often refer to π as a proof stream.

Security analysis. As described in the Introduction, we are inter-
ested in two properties of this scheme. Correctness says that when
P executes the query correctly, then V gets the same result as it
would have if it had just computed f(t) normally. The second prop-
erty, security, says that a computationally bounded, cheating prover
P ∗ cannot cause V to accept an incorrect answer. The basis of this
property is the use of collision-resistant hashes: we can show that
if P ∗ can cause V to accept an incorrect answer then the proof
returned by P ∗ will yield a collision. We state these properties pre-
cisely, in the context of λ•, in Section 4.

2.2 Introducing λ•, a language for programming ADSs
The Merkle tree verification procedure was carefully designed with
the properties of the underlying data structure in mind. In particular,
there can be but one path from the root to a given leaf, and from
this path we can determine digests sufficient to recompute the root
digest. The question is: how might we generalize this approach to
arbitrary data structures t involving arbitrary computations f? We
designed λ• as a solution to this problem.
λ• is a completely standard, purely functional programming

language extended with what we call authenticated types •τ , along
with coercions auth and unauth , which have type ∀α.α → •α
(for introducing authenticated values) and type ∀α.•α → α (for
eliminating authenticated values), respectively. A function p using
authenticated types is compiled to variations pP and pV for the
prover and verifier, respectively. Data of type •τ stored at the
prover is like a normal value of type τ but augmented with digests,
while data of type •τ stored at the verifier is simply a compact
digest. The auth/unauth coercions at the prover facilitate proof
generation, while at the verifier they check a provided proof. In
short, λ•’ design exploits the observation that proof generation and
proof verification can be made structurally identical essentially by
piggybacking them on top of the ideal computation of f(t).

Example. As an illustration, Figure 2 defines a λ• implementa-
tion of Merkle trees, using OCaml-inspired syntax (which closely
matches that of our implementation). The type tree is simply a bi-
nary tree with strings stored at the leaves. The fetch function takes
an index expressed as a list of bits, which is interpreted by fetch
as a path through the tree, with L bits directing the traversal to the
left, and R bits directing it right. The function returns the string as-
sociated with the Tip that is eventually reached. Notice that since
the argument t has type •tree, the function must call unauth t to
coerce it to a tree to be matched against (we give a use of auth in
Section 2.3).

Interpretation of authenticated types. The λ• compiler will pro-
duce two variations of a program p: program pP for the prover, and
pV for the verifier. All standard constructs in p have the usual se-
mantics in both variations, but authenticated types are interpreted
differently.

::π =

hash () = h6

hash () = h3

hash () = h1

where

⟨h1, ⟩

Bin(⟨h2, ⟩,⟨h3, ⟩)

Bin(⟨h4, ⟩,⟨h5, ⟩) Bin(⟨h6, ⟩,⟨h7, ⟩)

Tip(str1) Tip(str2) Tip(str3) Tip(str4)

t = Bin(h2,h3) Tip(str3)Bin(h6,h7) ::

Tip(str3)

Bin(h2,h3)

Bin(h6,h7)

Figure 3. A Merkle tree t in λ• (of type •tree from Figure 2) and
proof stream π for query fetch t [R; L]. Hashes of relevant shallow
projections are given in the lower right.

Prover For pP , values of type •τ consist of pairs 〈h, v〉 where v
has type τ and h is its digest, i.e., a hash of the shallow pro-
jection of v. Shallow projection is formally defined in Figure 9,
but the intuition is simple: the shallow projection of a value
is just the value itself for all values of type τ where τ does
not consist of any authenticated types •τ0, while the shallow
projection of an authenticated value 〈h, v〉 is just the digest h.
Looking at the definition of type tree in the figure, we can see
that recursive references to the tree in the Bin case are authen-
ticated. As such, the prover’s representation is just as described
in the previous subsection: each node of the tree has the form
Bin(〈h1, v1〉, 〈h2, v2〉), which consists of the left subtree v1
and its digest h1, and the right subtree v2 and its digest h2. Each
digest consists of the hash of the shallow projection of its re-
spective tree. So, if v1 was a leaf Tip(s), the shallow projection
is just Tip(s) itself, and thus h1 is the hash of Tip(s). On the
other hand, suppose v1 was a node Bin(〈h11, v11〉, 〈h12, v12〉).
Then Bin(h11, h12) is this node’s shallow projection, and h1 is
its digest.

Verifier For pV , values of type •τ consist solely of the digest h
of some value of type τ . As such, for our example, while the
prover maintains the entire tree data structure, the verifier only
keeps the digest of the root. In general, values in pV are the
shallow projections of their corresponding values in pP ; we
define this notion formally in the next section.

Turning to the coercions, for both the prover and verifier the auth v
coercion computes the hash h of the shallow projection of v; for
the prover, this hash is paired with v and for the verifier we retain
only h itself. The interesting part is the semantics for unauth .
For the Prover, the argument has the form 〈h, v〉 and the coercion
simply returns v. In addition, it computes the shallow projection of
v and adds it to the proof π, which is just a list of such shallow
projections. We often refer to π as a proof stream to emphasize
the list structure. For the verifier, the argument given to unauth is
a hash h. It compares this hash against the hash of the element s
at the head of the proof stream, which is a shallow projection of
type τ . Assuming all is well, this element is the one the Prover put
there and so the hashes will match. If so, the coercion returns s.
Otherwise there is a problem and verification fails.

Example Merkle tree query. Figure 3 depicts the prover’s version
of an object of type •tree corresponding to the Merkle tree from
Figure 1. These trees are structurally similar but not identical; in
particular, notice that a node’s digest is stored with the pointer
to that node, rather than at the node itself. Suppose the prover
executes the query (fetch [R; L] t), which corresponds to our
earlier example query. The figure also depicts the proof stream
π it produces, along with the hashes of shallow projections of
relevant tree elements. The first thing the prover will execute is
unauth t, which returns the pointer to the first node, and stores
its shallow projection Bin(h2,h3) in the proof stream—notice that
this is the same as the pointed-to node but the sub-tree pointers
have been dropped. Execution continues to the third case of the

3 2013/7/14

www.manaraa.com

match, which recursively calls (fetch [L] r), where r is bound to
the authenticated value 〈h3, v〉 such that v is the right subtree. The
prover then invokes unauth on this pair, returning v and adding
Bin(h6,h7) to the proof stream. This time we take the second case
of the match, recursing on 〈h6,Tip(str3)〉. This time unauth
returns Tip(str3) and adds its shallow projection (Tip(str3) itself)
to the proof stream. Execution concludes with str3 as the final
result while the final proof stream π consists of three elements,
representing the three nodes visited.

The verifier begins with the proof stream π and just the digest of
t, which is h1. It then runs (fetch [R; L] t) using its version of the
code. It first executes unauth h1, which compares h1 to the hash of
the first element s0 of the proof stream, which is Bin(h2,h3). The
hashes match, as per the equations given in the lower right of the
figure, and thus execution continues using s0. Execution proceeds
to the third case of the match, recursively calling fetch with [L]
and h3, the digest of the right subtree. This time, calling unauth
h3 results in comparing h3 to the hash of the second element in
the proof stream, which is Bin(h6,h7), and once again the hashes
match and the proof stream element is returned. The second branch
of the match fires, so the recursive call passes [] and h6, the digest
of the left subtree. In this case, unauth h6 compares h6 to the
hash of the final element of the proof stream, Tip(str3), which
is returned as the hashes match. Thus execution concludes with the
final result as str3. As all hash checks succeeded and the final result
matches, and the proof stream is empty, the verifier has established
the prover’s execution is correct, with high probability.

Analysis. Our λ• Merkle trees are asymptotically as efficient as
the originals, and as secure. As before, the verifier maintains only
the constant-sized digest between queries, and the size of the fetch
proof and the time to generate and verify it (in a pipelined fash-
ion) is O(log2 n): the proof stream consists of one (constant-size)
shallow projection for each recursive call to fetch. The argument
for security once again rests on collision-resistant hashes, though
λ• verification effectively checks the root digest top-down rather
than bottom-up. Our proof stream has some redundancy (it contains
hashes h2, h3, h6, and h7, whereas in Figure 1 the proof contains
only h2 and h7) but this is only a constant factor and as we show in
Section 5.2 it can be optimized away.

2.3 Discussion: Benefits of λ•
The primary benefit of writing ADSs in λ• over prior approaches
is flexibility and ease of use. λ• can support essentially any com-
putation over a DAG-oriented data structure that is expressed as
functional program. Moreover, as we show in Section 4, by virtue
of writing an ADS in λ• we are sure it is both correct and secure;
there is no need for a designer to make a new argument for se-
curity with each new data structure. As far as we are aware, λ•
can be used to implement any previously proposed ADS based on
collision-resistant hashing. In particular, as described in Section 6,
so far we successfully implemented Merkle trees and authenti-
cated versions of Binary Search Trees, Red-black+ Trees [20], Skip
Lists [25], and variations of the Bitcoin block chain [18], all of
which enjoy asymptotically identical, or better, performance than
their specially-designed counterparts.

Support for updates. Martel et al. [14] also previously proposed
a general-purpose scheme that supports ADSs based on DAGs. In
principle, their scheme could also support the above-mentioned
data structures, but only for query computations, not updates. By
contrast, updates are completely natural in λ•. For example, the
function update in Figure 4 updates a Merkle tree. The verifier
could submit a request to the prover to run (update [R; L] t str5).
The prover will produce a proof stream π for the operation along
with a new authenticated tree t′ that contains the modification, and

let rec update (idx:bit list) (t:•tree) (newval:string) : •tree =
match idx, unauth t with
| [], Tip → auth(Tip newval)
| L::idx’, Bin(l,r) → auth(Bin(update idx’ l newval, r))
| R::idx’, Bin(l,r) → auth(Bin(l, update idx’ r newval))

let update cps (idx:bit list) (t:•tree) (newval:string) : •tree =
let rec update (k : •(•tree → •tree)) idx t x : •tree =

match idx, unauth t with
| [], Tip → (unauth k) (auth(Tip x))
| L :: idx’, Bin(l,r) →

update (auth(fun t → auth(Bin(t,r)))) idx’ l x
| R :: idx’, Bin(l,r) →

update (auth(fun t → auth(Bin(l,t)))) idx’ r x
in update (auth(fun t → t)) idx t newval

type stack = E | SL of •stack × •tree | SR of •stack × •tree
let update stk (idx:bit list) (t:•tree) (newval:string) : •tree =

let rec build idx t (s:stack) : •tree × stack =
match idx, unauth t with
| [], Tip → auth(Tip newval), s
| L::idx’, Bin(l,r) → build idx l (SL(auth s, r))
| R::idx’, Bin(l,r) → build idx r (SL(auth s, l)) in

let rec apply (child:•tree, s:stack) : •tree =
match s with
| E → child
| SL(s, r) → apply (auth(Bin(child, r)), unauth s)
| SR(s, l) → apply (auth(Bin(l, child)), unauth s) in

apply (build idx t E)

Figure 4. Functions for updating a Merkle tree in λ•

which shares much of the structure of the original tree t, as per
standard functional programming style. The prover can then update
its root to now be t′ and then send the verifier the result of the
execution, which is the digest portion of t′ and the proof stream
π. The verifier can then use π in the usual way to verify that (the
digest of) t′ is indeed the right result and then update its local root.3

Controlling performance. The fact λ• is a general-purpose pro-
gramming language means that it affords substantial flexibility to
the ADS designer in customizing an ADS design to her needs.

As one possible customization, the designer might refactor op-
erations to better control space usage. Consider the update func-
tion once again. While verification of an update can be pipelined,
so that the proof stream contributes only a constant amount to the
memory requirements of the verifier, we observe that executing up-
date will requireO(logn) stack space, since the function is not tail
recursive. One way to eliminate this overhead is to rewrite update
in continuation-passing style (CPS) such that the continuation it-
self is authenticated, as for the function update cps given in the
middle of Figure 4. As such, recursive uses of nested continuations
will be replaced with a hash, effectively bounding the depth of the
stack encoded in the continuation. To the best of our knowledge,
no prior work has considered authenticated closures. Another way
to achieve the same effect, but perhaps less elegantly, is to use an
explicit authenticated stack as is done by update stk given at the
bottom of the figure.

3 In general, the prover will return the shallow projection of the result of
a computation back to the verifier; when the result is a normal value the
prover will thus return the value itself (as with the boolean result in our
(fetch [R; L] t) example query).

4 2013/7/14

www.manaraa.com

Types τ ::= 1 | τ1 → τ2 | τ1 + τ2 | τ1 × τ2 | µα.τ | α | •τ
Values v ::= () | x | λx.e | rec x.λy.e

| inj1 v | inj2 v | (v1, v2) | roll v
Exprs e ::= v | let x = e1 in e2 | v1 v2 | case v v0 v1

| prj1 v | prj2 v | unroll v | auth v | unauth v

Figure 5. Syntax for types and terms

The designer could also tune performance by adjusting the
definition of the data structure itself. For example, we could have
defined Merkle trees instead as follows:

type tree = Tip of string | Bin of •(tree × tree)

In this case, we are only hashing nodes, and will never hash tips.
This definition makes more sense when the hash of the Tip is larger
than the representation of Tip itself, e.g., if the tree stored integers
instead of strings. As another variation, we might imagine defining
a tree that only optionally authenticates its children:

type tree =
| Tip of string
| Bin of tree × tree
| AuthBin of •(tree × tree)

Then the tree might go several levels using Bin before using Au-
thBin. This design thus increases the constant factor on asymptotic
space usage, but may reduce proving/verification time.

All of these customizations are possible, and easy to experiment
with, thanks to the fact that λ• is a general-purpose programming
language. However, this flexibility cuts both ways: there is nothing
(at the moment) stopping the programmer from producing a subop-
timal design. As an extreme example, the programmer could write
type tree = Tip of string | Bin of tree × tree—i.e., without any
use of authenticated types! This design will be secure and correct,
as with every λ• program, but will effectively require the verifier
to maintain the entire tree, not simply a digest. Fortunately, there
is a simple rule of thumb that may have already become evident
to the reader by this point: the data structure type definition should
authenticate recursive references, thus aiming for shallow projec-
tions to be constant-sized. We leave to interesting future work the
task of automating the transformation of •-free type definition to
an efficient authenticated one.

3. λ•: A Language with Authenticated Types
This section formalizes λ•, our language for writing computations
over authenticated data structures. We present the syntax, typing
rules, and operational semantics for λ• programs. The next section
proves that λ• computations produce correct and secure results.

3.1 Syntax
Figure 5 presents the syntax for λ•. Other than authenticated types
•τ , the type language is entirely standard, consisting of the unit
type 1, function types τ1 → τ2, sum types τ1 + τ2, product types
τ1 × τ2, recursive types µα.τ and variable types α arising from
these. In this syntax, our authenticated tree type defined in Figure 2
would be written µα.string + (•α × •α)), where string would
itself be encoded, e.g., as a list of Peano-style integers. Our lan-
guage does not include parametric polymorphism, for simplicity,
but we see no difficulties with adding it. The language also does
not support references because mutations would risk invalidating
hashes for •τ values. In particular, given an authenticated value
〈h, v〉 where v is a reference, a mutation via v may invalidate h.

Γ ` v : τ1

Γ ` inj1 v : τ1 + τ2

Γ ` v : τ2

Γ ` inj2 v : τ1 + τ2

Γ ` v : τ1 + τ2 Γ ` v1 : τ1 → τ Γ ` v2 : τ2 → τ

Γ ` case v v1 v2 : τ

Γ ` v : τ

Γ ` auth v : •τ
Γ ` v : •τ

Γ ` unauth v : τ

Figure 6. Selected typing rules

Terms (values v and expressions e) are in administrative normal
form [6] to keep the semantics simple. In this form, the grammar
forces us to write let x = e1 in let x = e2 in x y instead of
the more familiar e1 e2, for example. In addition to variables x,
the term language includes functions λx.e and function application
v1 v2; sum-type values inj1 v and inj2 v which are eliminated
by case v v0 v1, where v0 and v1 are expected to be functions;
products (v1, v2) eliminated by expressions prj1 v and prj2 v;
values of recursive type introduced via roll v and eliminated by
unroll v; and finally fixpoints rec x.λy.e for defining recursive
functions (where inside of λy.e references to x refer to the function
itself). Authenticated types •τ are introduced by coercion auth and
eliminated by unauth .

3.2 Typing
The typing judgment for λ• programs is the usual one, written
Γ ` e : τ . It states that expression e has type τ under environment
Γ, where Γ is a map from variables x to types τ . Typing rules for
most constructs are standard. Selected rules are given in Figure 6:
the rules for sum types are given at the top of the figure, while the
rules for auth and unauth are given at the bottom.

3.3 Operational semantics
In practice, our compiler takes a program like the one in Figure 2
and outputs versions to be run by the prover and the verifier. In
our formalization, we instead define distinct semantics for the same
program, as determined by an execution mode m, where m = P
for the prover’s execution, and m = V for the verifier’s. We also
define a mode I for the Ideal case, representing a computation that
happens in the normal way, ignoring authenticated types; this is
needed for stating the security and correctness properties.

We define a small-step operational semantics having the form
� π, e � →m � π′, e′ �, where π is the proof stream, which
is a list of shallow projections s, and m is the mode. This can be
read: An expression e coupled with a proof stream π can evaluate
one step in mode m to produce an expression e′ and an updated
proof stream π′. We define� π, e � →i

m � π′, e′ � to be the
reflexive, transitive closure of the single-step relation; it states that
e evaluates, in i steps, to e′ in mode m, starting with proof stream
π and finishing with π′. The proof stream is produced in mode P ,
so π is a prefix of π′ in this mode. The stream is consumed in mode
V , and thus π′ is a suffix of π. The proof stream is ignored in mode
I . We use the operator @ to denote the concatenation of two proof
streams, treating @ as associative with the empty stream [] as the
identity. We write [s] as the singleton stream containing element s.

The rules for standard language features are identical in all three
modes, and are standard. They are defined in the top portion of
Figure 7, and we discuss them briefly in order. The rule for function
application (λx.e) v substitutes v for x in e—this substitution
is written e[v\x]. Application of a recursive function is similar:
when the function (rec x.λy.e) is on the lhs of an application, we
substitute x in the function body ewith the recursive function itself.

5 2013/7/14

www.manaraa.com

� π, (λx.e) v � →m � π, e[v\x]�
� π, (rec x.λy.e) v � →m � π, (λy.e′) v �

where e′ = e[(rec x.λy.e)\x]

� π, let x = v1 in e2 � →m � π, e2[v1\x]�
� π, case (inj1 v)(λx.e1)(λx.e2)� →m � π, e1[v\x]�
� π, case (inj2 v)(λx.e1)(λx.e2)� →m � π, e2[v\x]�
� π, prj1 (v1, v2)� →m � π, v1 �
� π, prj2 (v1, v2)� →m � π, v2 �
� π, unroll (roll v)� →m � π, v �

� π, e1 �→m � π′, e′1 �
� π, let x = e1 in e2 �→m � π′, let x = e′1 in e2 �

� π, e�→i
m � π′, e′ �

� π′, e′ �→m � π′′, e′′ �
� π, e�→i+1

m � π′′, e′′ �
� π, e�→0

m � π, e�

Figure 7. Standard single-step and multi-step operational rules

� π, auth v � →I � π, v �
� π, unauth v � →I � π, v �
� π, auth v � →P � π, 〈hash ([v]), v〉 �
� π, unauth 〈h, v〉 � →P � π @ [([v])], v �
� π, auth v � →V � π, hash v �

hash s0 = h

� [s0] @ π, unauth h�→V � π, s0 �

where v ::= . . . | h | 〈h, v〉

Figure 8. Operational rules for authenticated values

([()]) = () ([x]) = x
([〈h, v〉]) = h ([λx.e]) = λx.([e])
([auth v]) = auth ([v]) ([unauth v]) = unauth ([v])
([(v1, v2)]) = (([v1]), ([v2])) ([prji v]) = prji ([v])
([roll v]) = roll ([v]) ([unroll v]) = unroll ([v])
([rec x.λy.e]) = rec x.([λy.e]) ([inji v]) = inji ([v])

([case v v0 v1]) = case ([v]) ([v0]) ([v1])
([let x = e1 in e2]) = let x = ([e1]) in ([e2])

Figure 9. Shallow projection of an expression e, written ([e])

Let-binding is used to sequence computations, either evaluating the
bound expression e1 one step or else, if this expression is a value
v1, substituting that value for x in the body e2. The semantics of
case depends on whether it is given inj1 v or inj2 v; in the former
case we substitute v in the first lambda term (the “true branch”),
else we substitute it in the second (“false”) one. Projection from
a pair (v1, v2) produces v1 for prj1 and v2 for prj2. Finally, the
recursive type coercions unroll and roll nullify each other.

The rules for the multi-step relation are given at the bottom of
Figure 7, and are also standard.

The operational rules for authenticated values are given in Fig-
ure 8. For mode I , authenticated values of type •τ are merely val-
ues of type τ and the auth/unauth operations are no-ops. For
mode P , values of type •τ are implemented as a pair 〈h, v〉 of a
hash h and a value v (of type τ). As shown in the auth rule, the
hash is computed by applying a hash function hash over the shal-

low projection of v, written ([v]). We do not formalize the semantics
of hash explicitly; in practice it can be implemented by serializ-
ing the value it is given and hashing that using a collision-resistant
hash function.4 The shallow projection operation is defined in Fig-
ure 9. It is essentially a fold over the structure of the term, preserv-
ing that structure in every case but that of values 〈h, v〉: here we
simply drop the value v and retain the hash h. Another interesting
case is functions λx.e: we recursively descend into e to translate
any 〈h, v〉 values that appear there. Such values will not appear in
source programs, but they can arise via substitution under lambdas.
Returning to Figure 8, the mode-P semantics of unauth 〈h, v〉 is
to strip off the hash, returning v, while adding the shallow projec-
tion of v to the end of the proof stream. Finally, for mode V the
representation of •τ is the hash h of a value of type τ . The auth
rule constructs this representation, while the unauth rule checks
that the hash value matches the shallow projection at the head of
the proof stream.

4. Metatheory
We want to show that well-typed λ• programs will (a) produce
correct results—that is, results that all three modes agree on—or
else (b) a malicious prover has been able to find a hash collision,
which we assume is computationally difficult. We call property (a)
correctness and property (b) security. In this section we state and
prove these two properties.

4.1 Agreement
Before defining these properties, we must define what we mean
when we say that the different execution modes “agree” on their
result—it cannot be that these results are syntactically equal be-
cause each mode interprets authenticated values differently. For ex-
ample, consider the update function from Figure 4. In the ideal set-
ting, this function will return a normal tree v—because •τ values
are the same as those of type τ , the tree v will contain no digests.
On the other hand, the prover will return a value 〈h, vP 〉, where h is
the digest of vP . For the same insertion on the same tree, the results
v and 〈h, vP 〉 in I and P modes, respectively, should “agree” with-
out being equal: v will just be a normal tree, while vP will contain
digests (one per node)—but the elements and sub-trees, excepting
the digests, should be the same. Finally, running the insertion at
the verifier will return a digest h, which should be the same digest
contained in the prover’s returned value 〈h, vP 〉.

We formalize this connection as a three-way type-indexed rela-
tion Γ ` e eP eV : τ , given in Figure 10, which states In envi-
ronment Γ, Ideal expression e, prover expression eP , and verifier
expression eV all agree at type τ . In every case but that of authenti-
cated values (the last rule), agreement follows syntactic structure of
the terms, and the shape of each rule matches that of the standard
type rules. The rule for authenticated values formalizes the intu-
ition given above; it states that Γ ` v 〈h, vP 〉 h : •τ holds when
(a) the digest h of both the prover and verifier is the same; (b) this
digest is the hash of the shallow projection of the prover’s value;
(c) the prover’s value agrees with the Ideal value. Note that the def-
inition makes use of the shallow projection of vP for (c)—during
real execution, this value comes from the proof stream.

The agreement relation is intimately connected to the shallow
projection operator; in fact, we can prove that a prover’s term only
ever agrees with a verifier’s term when the latter is the shallow
projection of the former. Moreover, we prove for any given ideal
term e, there is at most one pair of terms eP and eV that agree with
it under a given environment Γ and type τ .

4 For functions λx.e, serialization involves pretty-printing the actual code.

6 2013/7/14

www.manaraa.com

Γ ` () () () : 1
Γ(x) = τ

Γ ` x x x : τ

Γ, x:τ1 ` e eP eV : τ2

Γ ` (λx.e) (λx.eP) (λx.eV) : τ1 → τ2

Γ ` v1 v1P v1V : τ1 → τ2 Γ ` v2 v2P v2V : τ1

Γ ` (v1 v2) (v1P v2P) (v1V v2V) : τ2

Γ ` e1 e1P e1V : τ1 Γ, x:τ1 ` e2 e2P e2V : τ2

Γ ` (let x = e1 in e2) (let x = e1P in e2P) (let x = e1V in e2V) : τ2

Γ, x:τ1 → τ2 ` (λy.e) (λy.eP) (λy.eV) : τ1 → τ2

Γ ` (rec x.λy.e) (rec x.λy.eP) (rec x.λy.eV) : τ1 → τ2

Γ ` v vP vV : τ1

Γ ` (inj1 v) (inj1 vP) (inj1 vV) : τ1 + τ2

Γ ` v vP vV : τ2

Γ ` (inj2 v) (inj2 vP) (inj2 vV) : τ1 + τ2

Γ ` v vP vV : τ1 + τ2
Γ ` vP v1P v1V : τ1 → τ
Γ ` vV v1V v2V : τ2 → τ

Γ ` (case v v1 v2) (case vP v1P v2P) (case vV v1V v2V) : τ

Γ ` v1 v1P v1V : τ1 Γ ` v2 v2P v2V : τ2

Γ ` (v1, v2) (v1P , v2P) (v1V , v2V) : τ1 × τ2

Γ ` v vP vV : τ1 × τ2
Γ ` (prj1v) (prj1 vP) (prj1 vV) : τ1

Γ ` v vP vV : τ1 × τ2
Γ ` (prj2 v) (prj2 vP) (prj2 vV) : τ2

Γ ` v vP vV : τ [µα.τ\α]

Γ ` (roll v) (roll vP) (roll vV) : µα.τ

Γ ` v vP vV : µα.τ

Γ ` (unroll v) (unroll vP) (unroll vV) : τ [µα.τ\α]

Γ ` v vP vV : τ

Γ ` (auth v) (auth vP) (auth vV) : •τ

Γ ` v vP vV : •τ
Γ ` (unauth v) (unauth vP) (unauth vV) : τ

` v vP ([vP]) : τ hash ([vP]) = h

Γ ` v 〈h, vP 〉 h : •τ

Figure 10. Agreement relation: defines those expressions that agree (are morally, if not syntactically, the same) in the Ideal, Prover, and
Verifier modes. The most interesting rule is the last one, while the rest are three-way versions of the standard type rules.

Lemma 1 (Agreement and shallow projection).
Suppose Γ ` e eP eV : τ . Then

1. ([eP]) = eV .
2. Γ ` e e′P e′V : τ implies that e′P = eP and eV = e′V .

Proof. By induction on Γ ` e eP eV : τ .

Client and server agree. In our client and server scenario, a
query/update sent by the client will reference the data structure
stored at the server using a free variable, e.g., the t in the query
member t 4. To run this query on the server, we substitute the
prover’s representation for t, while to verify the result at the client,
we substitute t’s digest. These representations should agree. The
following lemma states that, given an expression to run, call it e,
containing free variables with authenticated type, then substituting
authenticated values that agree for the free variables of e produces
versions eI , eP , and eV that also agree.

Lemma 2. Given the following:

1. Γ ` e : τ where e contains no values of type •τ
2. For all xi ∈ domain(Γ),

(a) Γ(xi) = •τi for some τi
(b) ` vi 〈hi, vPi〉 hi : •τi for some 〈hi, vi〉 and vPi

3. eP = e[〈h1, vP1〉\x1]...[〈hn, vPn〉\xn]
eV = e[h1\x1]...[hn\xn]
eI = e[v1\x1]...[vn\xn]

Then ` eI eP eV : τ .

The proof of this lemma follows from straightforward applica-
tion of the following, more general, substitution lemma:

Lemma 3 (Substitution). If Γ, x:τ ′ ` e eP eV : τ and `
v vP vV : τ ′ then Γ ` (e[v\x]) (eP [vP \x]) (eV [vV \x]) : τ .

Proof. The proof is by induction on Γ, x:τ ′ ` e eP eV : τ . The
only interesting case is when Γ, x:τ ′ ` v′ 〈h, v′P 〉 h : •τ . The
empty environment in the premise ` v′ v′P ([v′P]) : τ ensures
that v′ and v′P contain no variables, so the substitution will be the
identity and the result follows by assumption.

4.2 Correctness and Security
Now we can state and prove our main theorem, Theorem 1, which
encapsulates the two properties of interest, correctness and secu-
rity. Informally, the theorem says that if we start with three terms
eI , eP , and eV that agree (which will be the case at the start of
evaluating a query/update as per Lemma 2), and each term takes
i evaluation steps, then we have one of two possible outcomes,
based on the proof streams produced/consumed by the prover/ver-
ifier. The prover’s execution will produce stream π′p. If the verifier
consumes this stream (e.g., because the server executes as it should)
then the resulting terms will be related; i.e., the computation is cor-
rect. Moreover, if those terms are not values (that is, the computa-
tion is not complete), they can evaluate at least one additional step.
On the other hand, if the verifier does not consume π′p but rather
some other stream (e.g., because the server is behaving maliciously
or incorrectly), then the only way all three terms could have taken
i steps is if that consumed stream contains a hash collision. That
is, the consumed stream contains an element s† that corresponds
to an element s in π′p such that s 6= s† but hash s = hash s†.
A corollary of this statement is that if at any point during their ex-
ecution the three terms disagree, then it can only be because of a
hash collision (something which is assumed to be computationally
infeasible). We now state this theorem (and corollary) formally.

7 2013/7/14

www.manaraa.com

Theorem 1. Given the following:

• ` eI eP eV : τ
• � [], eI �→i

I � [], e′I �
• � [], eP �→i

P � π′p, e
′
P �

• � πv, eV �→i
V � π′v, e

′
V �

Then

Correctness: πv = π′p @ π′v implies ` e′I e′P e′V : τ .
Moreover, either
1. e′I , e′P , and e′V are all values, or
2. there exist e′′I and� π′′p , e

′′
P � and� π′′v , e

′′
V � s.t.

• � [], eI �→i+1
I � [], e′′I �

• � [], eP �→i+1
P � π′′p , e

′′
P �

• � πv, eV � →i+1
V � π′′v , e

′′
V � or else it is stuck on

an unauth .
Security: πv 6= π′p @ π′v implies there exists some π0, π′′p ,

π′′v , s and s† such that π′p = π0 @ [s] @ π′′p and πv =
π0 @ [s†] @ π′′v @ π′v where s 6= s† but hash s = hash s†.

Corollary 1. If ` eI eP eV : τ and each term takes i steps to
e′I , e′P , and e′V , respectively, then 6` e′I e′P e′V : τ implies the
adversary has found a hash collision.

The proof of the main theorem is by induction on the length
i of the multi-step derivations. Key parts of the argument appeal
to lemmas about single-step evaluation, which we present next. In
particular, we prove correctness by proving variations of the stan-
dard progress and preservation lemmas, while we prove security
by appealing to a single-step security lemma.

Our progress lemma states that terms in agreement are either
values, or they can evaluate (at least) one step in their respective
mode, excepting the possibility that in verifier mode the term may
be stuck on a failed hash check (e.g., due to a corrupted proof
stream); importantly, this is the only reason the verifier will fail.

Lemma 4 (Progress). If ` e eP eV : τ then either e, eP , and eV
are values, or for all π there exist e′, e′P , e′V , π′, π′′ such that

1. � π, e�→I � π, e′ �
2. � π, eP �→P � π′, e′P �
3. � π, eV �→V � π′′, e′V �

or else unauth h is in redex position but cannot step because
either π = [] or π = [s] @ π0 for some π0, and hash s 6= h.

Proof. By straightforward induction on ` e eP eV : τ .
Next we prove a variation of the standard preservation lemma.

In particular we prove that if we have three terms that agree and
each term can take a step, then the terms to which they step agree if
and only if the proof stream is properly formed, i.e., the verifier
consumes some element s of the proof stream produced by the
prover, or no element is produced/consumed.

Lemma 5 (Preservation). Given the following:

1. ` e eP eV : τ
2. � π, e�→I � π, e′ �
3. � πp, eP �→P � π′p, e

′
P �

4. � πv, eV �→V � π′v, e
′
V �

Then ` e′ e′P e′V : τ if and only if π′p = πp and π′v = πv or there
exists some s such that π′p = πp @ [s] and πv = [s] @ π′v .

Proof. By induction on ` e eP eV : τ . Most cases are straight-
forward, and follow by application of the Substitution lemma. The
two interesting cases deal with authenticated computations:

• Suppose e, eP , and eV are auth v, auth vP and auth vV ,
respectively. Each takes a step in its respective mode, pro-
ducing v, 〈hash ([vP]), vP 〉, and hash vV , respectively, re-
sulting in πp = π′p and πv = π′v . Now we must prove
` v 〈hash ([vP]), vP 〉 hash vV : •τ , which in turn requires
proving ` v vP ([vP]) : τ and hash ([vP]) = hash vV . Both
are the consequence of Lemma 1-1 and ` e eP eV : τ .

• Suppose e, eP , and eV are unauth v, unauth vP and
unauth vV , respectively. Since each takes a step, we know
that vP = 〈h, v′P 〉 and vV = h′ for some h, h′, v′P . Since
these terms agree by assumption, we know that h = h′. Each
takes a step in its respective mode, producing terms v, v′P , and
s0, respectively, where we must have that πv = [s0] @ π′v
and π′p = πp @ [([v′P])]. Suppose ` v v′P s0 : τ . Then
we must show that s0 = ([v′P]), but this holds by Lemma 1-1.
On the other hand, suppose that s0 = ([v′P]). We can prove
` v v′P s0 : τ as follows. By inversion on ` e eP eV : τ
we know that ` v 〈h, v′P 〉 h : •τ and by inversion on this we
know ` v v′P ([v′P]) : τ . But this is the desired result since
s0 = ([v′P]).

Finally, we demonstrate that terms in agreement can take a
step to terms that no longer agree if and only if an adversary has
managed to find a hash collision.

Lemma 6 (Security). Given the following:

1. ` e eP eV : τ
2. � π, e�→I � π, e′ �
3. � πp, eP �→P � π′p, e

′
P �

4. � πv, eV �→V � π′v, e
′
V �

Then 6` e′ e′P e′V : τ if and only if there exists a pair s and s†

such that π′p = πp @ [s] and πv = [s†] @ π′v with s 6= s† but
hash s = hash s†; i.e., s and s† constitute a hash collision.

Proof. By induction on ` e eP eV : τ . Most cases are vacuous
because evaluation yields πp = π′p and πv = π′v which implies
` e′ e′P e′V : τ by Preservation. The remaining cases are for
let binding and unauth . The former follows by induction. For
the latter we have e, eP , and eV are unauth v, unauth vP and
unauth vV , respectively. Since each takes a step, we know that
vP = 〈h, v′P 〉 and vV = h′ for some h, h′, v′P . Since these terms
agree by assumption, we know that h = h′. Each takes a step in
its respective mode, producing terms v, v′P , and s0, respectively,
where we must have that πv = [s0] @ π′v and π′p = πp @ [([v′P])]
and hash s0 = h. Suppose 6` v v′P s0 : τ . By inversion on
` e eP eV : τ we know that ` v 〈h, v′P 〉 h : •τ and by inversion
on this we know ` v v′P ([v′P]) : τ and hash ([v′P]) = h. But then,
by Lemma 1-2, for all vP0 and vV 0 such that ` v vP0 vV 0 : τ
we must have vP0 = v′P and vV 0 = ([v′P]). So the reason we
cannot prove ` v v′P s0 : τ must be that s0 6= ([v′P]) while
hash s0 = h = hash ([v′P]). Conversely, suppose that s0 6= ([v′P]).
But then Lemma 1-2 and ` v v′P ([v′P]) : τ implies that we cannot
prove ` v v′P s0 : τ unless s0 = ([v′P]).

5. Implementation
This section describes our prototype extension to the OCaml com-
piler for supporting authenticated types. We discuss the basic ap-
proach to compilation5, two optimizations we implement, and cur-
rent limitations.

5 Our technique for extending the OCaml compiler is based on a
2012 blogpost by Jun Furuse: https://bitbucket.org/camlspotter/
compiler-libs-hack

8 2013/7/14

www.manaraa.com

5.1 Compilation
The compilation process works as follows. The programmer writes
an OCaml program p like that of Figure 2 that contains uses of au-
thenticated types. The type •α is declared abstract, as α authtype,
in the signature of the ADS module, which also declares the (poly-
morphic) auth and unauth coercions which pwill import. (In what
follows, we continue to write •τ rather than τ authtype, for legi-
bility.) Program p is then passed to our extended compiler which,
depending on a command-line mode flag, replaces each application
of auth and unauth it finds with a call to a prover- or verifier-
specific implementation. The result is output and linked with the
ADS module implementation.

The ADS module, given in Figure 11, defines type •α as ei-
ther a digest (just the hash, represented as a string), or as a pair of
the hash and a value of type α. The next four functions define the
prover’s and verifier’s versions of auth and unauth , respectively;
the calls to auth and unauth will be replaced by calls to these
functions instead. We can see that their code largely matches the
operational rules given in Figure 8, where the proof stream from the
rules is implemented as OCaml channels, prf output and prf input.
The one departure is that auth prover and unauth prover addition-
ally take a function shallow that is invoked to perform the shal-
low projection operation. This operation is needed because OCaml
does not provide a generic method for folding/mapping over the
structure of a term. As such, our compiler generates type-specific
shallow projection functions where needed, and includes them in
the replaced calls to auth and unauth . The type of the shallow
projection operator is determined by the concrete type inferred at
each auth/unauth call. For example, the unauth in let x : int =
unauth y is inferred to have type •int → int. Therefore, we need
a shallow projection operation of type int → int (which is just
the identity). The generated code will refer to the ADS module’s
shallow • function, shown at the bottom of the figure, for handling
(nested) authenticated values.

Figure 12 shows the result of compiling a variant of authenti-
cated binary search trees. The top of the figure is the code provided
by the programmer. Compilation will replace the call to auth with a
call to auth bst1 and the call to unauth with a call to unauth bst.
These functions are defined at the bottom of the figure, and employ
the needed, type-specific shallow projection operations.

The hash function referenced in Figure 11 is polymorphic, hav-
ing type ∀α.α → string. It is implemented by first serializing the
argument and then hashing it using SHA1 (which is widely con-
sidered to be collision-resistant). For serialization, we use OCaml’s
default serializer implemented in the Marshal module. This choice
has an implication for security: the worst-case cost to compute the
hash of a malicious string is bounded only by the representation of
an integer in OCaml, either 32 or 64 bits, depending on the OS.

5.2 Optimizations
Our compiler implements two optimizations that reduce the size of
the proof stream. The first optimization implements a reuse buffer.
The idea is that we can reduce the size of the proof stream, and
speed up proving/verification, when we anticipate that the same
elements may appear in it more than once. For example, if a client
submits a batch of operations to the server, it may end up traversing
the same nodes of the ADS multiple times, and the client could
cache these elements locally instead of reading them from the proof
stream each time.

This optimization requires modifying the unauth and auth
functionality; the modification is simlar for both prover and veri-
fier. A counter is incremented each time auth or unauth is called.
Each party maintains two data structures: LRU-Map, a mapping
from auth/unauth counter values to shallow projections, indicat-
ing the least-recently-used ordering, and Digest-Map, a mapping

type •α = | Shallow of string (* the digest *)
| Merkle of string × α

let auth prover (shallow: α → α) (v:α) : •α =
Merkle(hash (shallow v), v)

let unauth prover (shallow: α → α) (v:•α) : α =
let Merkle(,x) = v in
to channel !prf output (shallow x);
x

let auth verifier (v:α) : •α = Shallow(hash v)

let unauth verifier (v:•α) : α =
let Shallow(h) = v in
let y = from channel !prf input in
assert h = hash y;
y

let shallow • (Merkle(h,): •α) : •α = Shallow(h)

Figure 11. The implementation of type constructor • and the
Prover and Verifier’s unauth and auth coercions.

(* User-provided code *)
type bst = Tip
| Bin of •bst × int × •bst
| AuthBin of •(bst × int × bst)

let is empty (t:•bst) : bool = (unauth t = Tip)
let mk leaf (x:int) : •bst = AuthBin(auth(Tip, x, Tip))

(* Generated Prover code *)
let rec shallow bst : bst → bst = function
| Tip → Tip
| Bin (x, y, z) → Bin(shallow • x, y, shallow • z)
| AuthBin (x) → AuthBin (shallow bst1 x)

and shallow bst1 : bst × int × bst → bst × int × bst
= function (x, y, z) → (shallow bst x, y, shallow bst z)

let unauth bst = unauth prover shallow bst
let auth bst1 = auth prover shallow bst1

Figure 12. Example types and generated code (for prover)

from digests to auth/unauth counter values; collectively Digest-
Map and LRU-Map are referred to as “the cache,” as they contain
corresponding elements. When unauth is called, if the digest ex-
ists in Digest-Map, the prover omits (resp., verifier fetches from
the cache) the corresponding shallow projection, then updates the
counter value associated with it in the cache; otherwise, the prover
appends it to (resp., verifier reads it from) the proof stream and adds
it to the cache. If the size of the cache exceeds the parameter, then
the least recently used element (the smallest key in LRU-Map) is
removed. The proof generation/checking/size benefits come at the
cost of having to store the cache.

The second optimization we call suspending disbelief. It elim-
inates redundancy in shallow projections that contain hashes com-
putable from nested shallow projections appearing subsequently in
the proof stream. This optimization is implicit in the verification
procedure for Merkle trees given in Section 2.1. We can approxi-
mate the optimization for arbitrary data structures in λ• by using a
buffer to “suspend disbelief.” This optimization requires modifica-
tions to unauth for prover and verifier.

9 2013/7/14

www.manaraa.com

For the prover, the goal is to decide which digests in a shallow
projection can safely be omitted, which are those that correspond
to nodes that will be visited during subsequent calls to unauth . To
achieve this, we extend the representation for •α values:

type •α = ... | MerkleSusp of string × α × bool ref
| Sentinel

Each time unauth is called, the shallow projection is computed
differently: Merkle(d,a) that would ordinarily be replaced with
Shallow(d) is instead replaced with MerkleSusp(d,a,flag), where
flag is a fresh mutable flag (initially false) that indicates whether
the digest can be omitted. When one of the immediate children is
accessed by unauth the flag is set. Rather than writing the shallow
projection immediately to the proof stream, it is appended to a
queue. The queue is flushed when execution reaches a programmer-
inserted insist annotation. This is a hint that belief need no longer
be suspended; its placement has no effect on security but it is best
used at the end of a distinct operation. Before a queue element is
added to the proof stream, occurrences of MerkleSusp(d,a,flag)
are (functionally) replaced with Sentinel when !flag is true, and
replaced with Shallow(d) when !flag is false.

When the verifier encounters a shallow projection object in the
proof stream containing Sentinel values, its digest cannot be com-
puted immediately so the object is stored in a set referred to as the
suspended-disbelief buffer. If unauth is subsequently called on an
immediate child corresponding to a Sentinel, the root hash is un-
known so it cannot be immediately validated either. Thus we extend
the •α representation again with a new tag, Suspension. For every
object placed in the buffer, each immediate Sentinel is replaced
with a Suspension containing a callback closure and a mutable ref-
erence (initially empty) optionally containing a hash; when a leaf
node is accessed, the Suspension reference is updated with the ac-
tual digest of the leaf, and the callback is invoked. The callback
encapsulates a pointer to the parent node, and checks if all immedi-
ate Suspension children have been populated with digests; if so, the
callback removes the node from the buffer, and either validates the
node against digest, or recursively invokes the callback closure as-
sociated with the parent. Thus validation propagates upwards from
the leaves to the root.

type •α = ... | Suspension of string ref × (unit → unit)

A caveat of this optimization is that it exposes the verifier
to potential resource exhaustion attacks, as (potentially infinite)
computation is performed on untrusted data before it is validated.
A solution would be to bound the number of steps the program
should take before the buffer is cleared. Another caveat is that this
optimization requires additional storage on the verifier in contrast
to the original Merkle tree optimization.

5.3 Supporting full OCaml
Our compiler prototype supports authenticating the OCaml equiv-
alent of the type language given in Figure 5 with the exception of
function types. This support has been sufficient to program a vari-
ety of interesting data structures, as described in the next section.

To implement authenticated functions requires that we be able
to perform the shallow projection of a lambda term. Our formal-
ism does this by folding over the syntax of the lambda term’s body
to find authenticated values 〈h, v〉 and replace them with values
h. In an implementation this operation is tantamount to transform-
ing a closure’s environment. We could do this quite naturally using
Siskind and Pearlmutter’s map-closure operator [26], but unfor-
tunately (as they point out) it is not clear how to implement this
operator in a statically typed language, since the compiler cannot,
in general, know the types of a given closure’s environment vari-
ables. We could imagine storing type information with the closure

(e.g., Crary et al’s [3] term representations for types) in support of
a generic, run-time shallow projection operation as per the formal-
ism. In the meantime, the most natural use of authenticated closures
we have found is to support shallow CPS transformations; we can
use an explicit stack to the same effect, as shown in Figure 4.

Among other OCaml features not yet supported, the most desir-
able is authenticated polymorphic types. Similarly to closure envi-
ronments, the compiler cannot know types needed to perform shal-
low projection—if a value given to auth and unauth is polymor-
phic, then its type is determined by how type variables are instan-
tiated at a particular call-site. Once again, a generic shallow pro-
jection operator as per our formalism (and easily implemented in
a dynamically typed language) would fit the bill. We could imag-
ine requiring that auth and unauth each take an additional type
parameter; in most cases it could be statically determined, but to
support polymorphism it could be passed as an argument, e.g., to
the polymorphic function containing the auth/unauth call.

6. Evaluation
To demonstrate the effectiveness and generality of our language
and compiler, we have implemented a variety of ADSs. We ana-
lyze their performance and confirm it empirically with benchmarks
for selected algorithms. Our benchmarks were conducted using an
Amazon EC2 “m1.xlarge” instance (an Intel E5645 2.4GHz proces-
sor, with 16GB of RAM). All data structures were stored in RAM.
Complete code is given in the Appendix.

Merkle trees. Our version of Merkle trees was given in Figure 2.
As Merkle trees are the most common authenticated data structure,
and are typically implemented by hand, we compared the running
time of our compiled verifier routine to hand-written implementa-
tions in OCaml and in C (see Figure 13(c)). The benchmark con-
sists of 10,000 random accesses to trees of height h for h ∈ [5, 19].
Each array element is a 1024 byte string; thus the largest tree
contains approximately 250k elements and stores approximately
250MB of data in total. Compared to the hand-optimized version
in C, the program generated by our compiler runs is slower by only
a factor of two; the hand-written OCaml code is about 30% slower
than the C program. Profiling with gprof reveals that substantial
overhead is due to the Marshal serialization routine used by our
compiler; the hand-written OCaml code avoids this serialization by
concatenating the child digests directly.

Red-black+ Trees. A red-black+ tree is a self-balancing binary
tree—the + indicates that internal nodes only store keys, and the
values are stored only in the leaves. This data structure is appropri-
ate for a mutable dictionary. We consider authenticated search trees
to be the second oldest authenticated data structure, proposed by
Naor and Nissim [20] to implement certificate revocation lists. Our
results are asymptotically equivalent: the storage cost to the prover
for the entire data structure is O(n), while the computation cost
per operation for both prover and verifier is O(log n); the size of
the proof stream is also O(log n). Note that we also implement an
authenticated version of normal binary search trees, too, and these
also have the expected performance.

In Figure 13(a), we show the empirical runtime performance of
the authenticated red-black+ tree for both the prover (P) and veri-
fier (V) modes, as well the Ideal mode with the • annotations and
unauth/auth commands erased, to show the overall computational
overhead of authentication. The benchmark consists of 100, 000
random insertions into a random tree containing 2k elements, for
each k ∈ [4, 21]. P runs approximately 25% faster than V ; this
is because V computes a hash during both unauth and auth in-
structions whereas P only computes a hash during auth . Accord-
ing to profiler analysis (using gprof), V spends 55% of its time
in the SHA1 hash routine and 30% in (de)serialization routines;

10 2013/7/14

www.manaraa.com

P spends 28% of its time computing SHA1, 30% performing se-
rialization and 22% in garbage collection. The overhead of P is
approximately a factor of 100 compared to the ordinary data struc-
ture.

We measured the largest amount of memory allocated by
OCaml during this benchmark as shown in Figure 13(b). This illus-
trates the key advantage of an authenticated data structure scheme:
while P incurs space overhead by a factor of 3 vs the Ideal mode,
the space requirement of the V is effectively constant.

Finally, we used this benchmark to evaluate the effectiveness of
our two compiler optimizations on proof size (see Figure 13(d)).
For a binary tree, the suspended-disbelief buffer results in a proof-
size reduction of almost 50%, since only one of the left or right
child digests must be transmitted for each node. The reuse-cache is
most effective when the tree is small and mostly fits in the cache;
thus since the cache-size parameter in our benchmark is 1000, the
proof is nearly empty up to trees of height 9. However, because the
benchmark consists of random queries, the leaves and nodes toward
the bottom are accessed almost uniformly at random, so only a
constant number of nodes near the root are read from the cache
each query. The cache would be more beneficial in applications
where some nodes were accessed much more frequently.

Skip Lists. Skip lists [25] are randomized data structures pro-
viding similar performance (in expectation) to binary search trees.
Random algorithms can be used in λ• as long as P and V both
use the same pseudorandom function and seed. Our results are
asymptotically equivalent to previous work on authenticated skip
lists [10]: the storage cost to P for the entire data structure is
O(logn), where n is the number of elements inserted, and the ex-
pected computational cost to P and V as well as the size of the
proof stream is O(logn) while the worst-case in time and space is
O(n).

Planar Separator Trees. Planar separator trees are data structures
that can be used to efficiently query the distance of the shortest path
between two vertices in a planar graph (e.g., many road maps) [5].
A separator of a graph is a collection of vertices inducing a binary
partition on the graph, such that any path from a vertex in one
partition to a vertex in the other partition must pass through a vertex
in the separator. A consequence of them planar separator theorem
is that every planar graph has a separator that is small (O(

√
n),

where n is the number of vertices), yet induces a balanced partition
(both partitions have at least n

3
elements); a search structure can be

built over the graph by recursively constructing separators for each
partition. While the naı̈ve solution of storing the shortest distance
between every pair of vertices requires O(n2) storage, the planar
separator tree requires only O(n

3
2) space. The shortest distance

between any two points can be computed in O(
√
n log n) time

using this data structure. A potential application of an authenticated
planar separator tree is for a mobile device user to query a service
provider for travel directions, along with a proof that the response is
actually the shortest path (rather than, e.g., one that routes the user
out of their way past, past billboards for which the service provider
might receive a profit). Using our authenticated compiler, the proof
size and computation cost for P and V is also O(

√
n log n). We

include this primarily as an example of a data structure that has not
been treated as an authenticated data structure in prior work, but is
straightforward to authenticate using our framework.

Bitcoin. Bitcoin [18] is a peer-to-peer network implementing a
virtual currency; it features an authenticated data structure called
the blockchain, which represents a history of transactions. A global
ledger can be computed from the blockchain, which, abstractly
speaking, contains a set of currently valid coins. A valid transaction
removes a past coin from the ledger and adds a new one (assigned
to the recipient of the coin).

4 6 8 10 12 14 16 18 20
log2 tree size

10-2

10-1

100

101

102

ru
nn

in
g

tim
e

fo
r 1

00
,0

00
 in

se
rt

s
(s

)

Ideal
Prover
Verifier

(a) Running time

4 6 8 10 12 14 16 18 20 22
log2 tree size

104

105

106

107

108

109

he
ap

 a
llo

ca
tio

n
(b

yt
es

)

Ideal
Prover
Verifier

(b) Memory usage

4 6 8 10 12 14 16 18 20
tree height

0.0

0.5

1.0

1.5

2.0

2.5

ru
nn

in
g

tim
e

fo
r 1

00
,0

00
 q

ue
rie

s
(s

) λ •
ocaml
C

(c) our λ• compiler vs hand-
optimized code

4 6 8 10 12 14 16 18 20 22
log2 tree size

0

10

20

30

40

50

60

70

80

90

pr
oo

f s
iz

e
fo

r 1
00

,0
00

 q
ue

rie
s

(M
B)

original
susp-disbelief
reuse (1000)

(d) proof size with optional opti-
mizations

Figure 13. Empirical performance evaluation results. For 100,000
insertions into a red-black+ tree, (a) running time for Prover, Veri-
fier, and Ideal; (b) memory usage (heap size). (c) Running time for
fetch operation in a balanced merkle tree, for the program gener-
ated by our compiler, hand-written OCaml code, and hand-written
C code; For 100,000 random insertions in a binary search tree, (d)
the effect of two optional optimizations on proof stream size, com-
pared with two optional optimizations: a reuse-cache (of size 1000)
and the belief-suspension buffer.

The current Bitcoin data structure suffers from two drawbacks:
1) a miner (verifier) needs to maintain an entire local copy of
the global ledger to efficiently perform validation of transactions,
which may become unscalable as the number of coins increases;
and 2) at install time, a new client needs to download the entire
transaction history and perform linear computation (in the size of
the block chain) to construct the ledger even when it trusts the root
digest.

These drawbacks can be resolved if we build the ledger (as
an authenticated set) into the block chain data structure. We have
done this in our language by composing the blockchain data struc-
ture with a ledger consisting of our authenticated red-black+ tree,
thereby reducing client storage toO(log M), whereM bounds the
number of coins in the ledger. Full details are given in the Appendix

7. Related Work
As mentioned earlier, authenticated data structure research has had
a flurry of results [16, 19, 13, 1, 10, 12] from the cryptography com-
munity, proposing authenticated versions of set (non)-membership,
dictionaries, range queries, certain graph queries, B-trees, etc.

To the best of our knowledge, no one has offered a general
authenticated data structure implementation for generic programs.
Those closest work is by Martel et. al. [13], which proposes a
method for designing authenticated data structures for a class of
data structures referred to as “search DAGs.” Their model is lim-
ited to static data structures, i.e., does not support updates. Our

11 2013/7/14

www.manaraa.com

approach is also easier to use, since the programmer writes largely
standard (purely functional) implementations of data structures
and their operations, and the compiler generates the prover/verifier
code; in their approach, the task of designing and implementing
authenticated data structures still must be done by humans directly.

Our programmatically generated ADS implementations have
performance competitive with known customized ADS construc-
tions based on collision-resistant hashes. We note, however, that
while most are, not all known ADS constructions are based on col-
lision resistant hash functions. For example, bilinear-group based
ADS constructions exist for set operations [23]. Using alternative
algebraic primitives other than collision resistant hashes can some-
times yield asymptotically better ADS constructions.

Beyond the optimizations we have implemented (see Section
5.2), there are other known optimizations that we have not an in-
cluded. An example is the technique of “commutative hashing” due
to Goodrich et al. [10] which reduces the proof size when it is irrel-
evant which (of possibly several) child nodes are traversed. We be-
lieve it is likely that optimizations for specific data structures could
be incorporated generally into our compiler. Other optimizations
lie further outside our model; an example is a line of work begin-
ning with Merkle’s original paper [15, 2] in which the stored data
is not arbitrary, but is instead generated algorithmically (e.g., us-
ing a pseudo-random number generator). In this case, the prover’s
can be significantly reduced by recomputing data on the fly rather
than storing it. In our performance evaluation we consider mem-
ory usage and running time; however some work in authenticated
data structures [17, 13] considers I/O efficiency, another practical
characteristic.

Verified computation [7] and succint non-interactive arguments
of knowledge (SNARKs) [8, 24] can also yield asymptotically bet-
ter protocols for ensuring integrity of outsourced computation (e.g.,
with O(1) amount of client computation other than reading the
input and ouput). However, while theoretically attractive, known
verified computation and SNARKs schemes are orders of magni-
tude more expensive than constructions based on collision-resistant
hashes in practice [24] — partly due to the use of heavy-weight
cryptographic primitives such as Fully Homomorphic Encryption.

8. Conclusions
We have presented λ•, the first programming language for authen-
ticated data structures (ADS). We have formally proven that ev-
ery well-typed λ• program compiles to a secure protocol, and we
have implemented λ• as a simple compiler extension to OCaml so
that a programmer can easily derive an authenticated data structure
from any ordinary one. The protocols generated by our compiler
are competitive with the state-of-the-art in ADS based on collision-
resistant hash functions.

We believe this work is long past-due. ADS are a 30-year-old
technique in cryptography, and yet researchers have overlooked the
simple connection between ADSs encapsulated in our notion of
authenticated types. We plan to extend our language to be more
expressive, and to include more efficient techniques based on ad-
vanced cryptographic primitives. We hope our work encourages
ADS adoption in future secure cloud computing infrastructure.

References
[1] A. Anagnostopoulos, M. T. Goodrich, and R. Tamassia. Persistent

authenticated dictionaries and their applications. In Proc. ISC, pages
379–393, London, UK, UK, 2001. Springer-Verlag.

[2] P. Berman, M. Karpinski, and Y. Nekrich. Optimal trade-off for
Merkle tree traversal. Theor. Comput. Sci., 372(1):26–36, Mar. 2007.

[3] K. Crary, S. Weirich, and G. Morrisett. Intensional polymorphism in
type-erasure semantics. In ICFP, 1998.

[4] P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine. Authentic
third-party data publication. In Data and Application Security, pages
101–112. Springer, 2002.

[5] R. Duan. Planar separator theorem and its applications. lecture slides,
Advanced Graph Algorithms, Summer 2012. max planck institut
informatik. http://www.mpi-inf.mpg.de/departments/d1/
teaching/ss12/AdvancedGraphAlgorithms/Slides10.pdf.

[6] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of
compiling with continuations. In Proc. PLDI, 1993.

[7] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable
computing: Outsourcing computation to untrusted workers. In
CRYPTO 2010, pages 465–482. Springer, 2010.

[8] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span
programs and succinct NIZKs without PCPs. Cryptology ePrint
Archive, Report 2012/215, 2012. http://eprint.iacr.org/.

[9] M. T. Goodrich, C. Papamanthou, and R. Tamassia. On the cost of
persistence and authentication in skip lists. In Proc. Intl. Workshop
on Experimental Algorithms, volume 4525 of LNCS, pages 94–107.
Springer, 2007.

[10] M. T. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an
authenticated dictionary with skip lists and commutative hashing. In
Proc. DARPA Information Survivability Conference and Exposition
II (DISCEX II), pages 68–82, 2001.

[11] M. T. Goodrich, R. Tamassia, and N. Triandopoulos. Efficient
authenticated data structures for graph connectivity and geometric
search problems. Algorithmica, 60(3):505–552, 2011.

[12] F. Li, K. Yi, M. Hadjieleftheriou, and G. Kollios. Proof-infused
streams: Enabling authentication of sliding window queries on
streams. In VLDB, pages 147–158, 2007.

[13] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and
S. Stubblebine. A general model for authentic data publication,
2001. Available from http://www.cs.ucdavis.edu/~devanbu/
files/model-paper.pdf.

[14] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G.
Stubblebine. A General Model for Authenticated Data Structures.
Algorithmica, 39(1):21–41, Jan. 2004.

[15] R. C. Merkle. Secure communications over insecure channels.
Communications of the ACM, 21(4):294–299, Apr. 1978.

[16] R. C. Merkle. A certified digital signature. In G. Brassard, editor,
Proc. CRYPTO ’89, volume 435 of LNCS, pages 218–238. Springer-
Verlag, 1989.

[17] E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and
integrity in outsourced databases. Trans. Storage, 2(2):107–138,
2006.

[18] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
Technical report, unpublished, 2009.

[19] M. Naor and K. Nissim. Certificate revocation and certificate update.
In Proc. USENIX, pages 217–228, Berkeley, 1998.

[20] M. Naor and K. Nissim. Certificate revocation and certificate update.
IEEE J. on Sel. Areas Commun., 18(4):561–570, 2000.

[21] C. Papamanthou, R. Tamassia, and N. Triandopoulos. Authenticated
hash tables. In Proc. ACM Conference on Computer and Communi-
cations Security (CCS), pages 437–448. ACM, October 2008.

[22] C. Papamanthou, R. Tamassia, and N. Triandopoulos. Optimal
authenticated data structures with multilinear forms. In Proc. Int.
Conference on Pairing-Based Cryptography (PAIRING), pages 246–
264, 2010.

[23] C. Papamanthou, R. Tamassia, and N. Triandopoulos. Optimal
verification of operations on dynamic sets. In CRYPTO, pages 91–
110, 2011.

[24] B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio: Nearly
practical verifiable computation. In Proc. IEEE SSP, 2013.

[25] W. Pugh. Skip lists: a probabilistic alternative to balanced trees.
Communications of the ACM, 33(6):668–676, 1990.

[26] J. M. Siskind and B. A. Pearlmutter. First-class nonstandard
interpretations by opening closures. In POPL, 2007.

[27] R. Tamassia. Authenticated data structures. In 11th Annual European
Symposium on Algorithms, Sept. 2003.

12 2013/7/14

www.manaraa.com

type tree =
| Tip
| Bin of •tree × int × •tree

let rec member (t:•tree) (x:int) : bool =
match unauth t with
Tip → false
| Bin (l,y,r) →

if y = x then true
else if x < y then member l x
else member r x

let rec insert (t:•tree) (x:int) : •tree =
match unauth t with
Tip → auth (Bin(auth Tip,x, auth Tip))
| Bin (l,y,r) →

if y = x then t
else if x < y then auth (Bin(insert l x,y,r))
else auth (Bin(l,y,insert r x))

Figure 14. Binary Search Trees (implementing a set of ints)

A. Code Examples
Here we present the complete code for the ADSs we have imple-
mented, as discussed in Section 6. The next section presents an ex-
ploration on possible improvements to ADSs used in Bitcoin [18].

In particular, we implement three datastructures providing a set
semantics, supporting membership queries and insertions:

• FIgure 14 presents (unbalanced) binary search trees.
• Figure 15 presents red-black+ trees.
• Figure 16 presents skip lists.

Figure 17 presents a planar-separator tree for finding the distance
of the shortest path between two points in a planar graph.

B. Bitcoin case study
Bitcoin [18] is a peer-to-peer network that implements virtual
currency as a replicated ledger. Bitcoin’s core data structure, the
blockchain, is essentially an authenticated structure, and as such
we can model it in our language; however, the key operation,
blockchain validation, is suboptimal, and we can easily define
an improvement in our language via auxiliary authenticated data
structures.

Bitcoin participants (called miners) vote to establish a canon-
ical, linearized sequence of updates (called transactions) to the
ledger. Transactions are grouped into batches and stored in blocks.
Each block additionally stores a collision-resistant hash of the pre-
vious block, thus forming a blockchain; the hash of the most re-
cent block can thus be seen as the root digest of an authenticated
list containing all the transactions so far. A key requirement is that
participants only vote on updates that are valid according to cer-
tain rules depending on the current state of the ledger. Therefore
the blockchain must support the following query operation: does
the root digest of a blockchain represent a valid sequence of trans-
actions? When a new Bitcoin node joins the network, or rejoins
after some interruption, it downloads the sequence of blocks and
replays each update; both the transaction history and the ledger
are stored locally. We are interested in reducing the client’s local
space requirements; for example, a user may wish to validate the
blockchain using a trusted hardware device (e.g., a smart card) that
only has a small amount of integrated storage. At the time of this
writing, the entire transaction history is approximately 8 gigabytes
and the ledger takes up 250 megabytes.

type color = R | B
type voption = Non | Som of string
type tree = Tip
| Bin of color × •tree × (int × voption) × •tree

let lookup x =
let rec look t = match unauth t with
| Tip → None
| Bin (, ,(y, Som v),) → if y = x then Some v else None
| Bin (,l,(y, Non),r) → if x <= y then look l else look r
in look

let balanceL t = match unauth t with
| Bin (B, l, a, r) → begin match unauth l with
| Bin (R, l1, a1, r1) → begin match unauth l1 with
| Bin (R, l2, a2, r2) → auth(Bin(R,

auth(Bin(B,l2,a2,r2)),a1,
auth(Bin(B,r1,a,r))))

| → begin match unauth r1 with
| Bin (R, l2, a2, r2) → auth(Bin(R,

auth(Bin(B,l1,a1,l2)),a2,
auth(Bin(B,r2,a,r))))
| → t

end
end
| → t

end
| → t

(* balanceR (omitted) is analogous *)

let insert x v t =
let leaf = auth(Bin(B,auth Tip,(x,Som v),auth Tip)) in
let blacken Bin(, l, x, r) = Bin(B, l, x, r) in
let rec ins t = match unauth t with
| Tip → leaf
| Bin(c,l,(y,Som),r) →

if x = y then failwith ”duplicate insert” else
if x < y then auth(Bin(R,leaf,(x,Non),t)) else
if x > y then auth(Bin(R,t,(y,Non),leaf)) else
assert false
| Bin(c,l,(y,Non as yv),r) →

if x = y then t else
if x < y then balanceL(auth(Bin(c,ins l,yv,r))) else
if x > y then balanceR(auth(Bin(c,l,yv,ins r)))
else assert false

in auth(blacken(unauth(ins t)))

Figure 15. Red-black+ tree (keys are ints, values are strings)

13 2013/7/14

www.manaraa.com

type ord = Sentinel | Key of int
type skiplist =
| Nil | Node of •(skiplist × ord × skiplist)

let empty = Node(auth(Nil, Sentinel, Nil))

let rec member t x =
match t with
| Nil → false
| Node a → let (down,y,right) = unauth a in

if Key x = y then true else
if Key x < y then false else
if member right x then true else
member down x

let flip() = Random.bool()

let insert t x =
let rec ins t : skiplist * skiplist option = match t with
| Nil → failwith ”uninitialized skiplist”
| Node a → let (down, y, right) = unauth a in

(* invariant: x >= y, because of Sentinel *)
let godown() = match down with
| Nil → let leaf = Node (auth(Nil, Key x, right)) in

Node (auth(down, y, leaf)), Some leaf
| Node → match ins down with
| down1, None → Node (auth(down1, y, right)), None
| down1, Some leaf → if flip()

then Node (auth(down1, y, right)), None
else let leaf1 = Node (auth(leaf, Key x, right)) in

Node (auth(down1, y, leaf1)), Some leaf
in match right with
| Nil → godown()
| Node a → let (,z,) = unauth a in

if Key x = z then failwith ”duplicate insert”
else if Key x ¡ z then godown()
else let right1, fin = ins right in

Node (auth(down, y, right1)), fin
in let rec grow t leaf = if flip() then t
else let leaf1 = Node (auth(leaf, Key x, Nil)) in

grow (Node(auth(t, Sentinel, leaf1))) leaf1
in match ins t with
| t1, None → t1
| t1, Some leaf → grow t1 leaf

Figure 16. Skiplist

In our simplified Bitcoin model (see Figure 18), the ledger is
simply a set of integers (in actuality, the ledger associates quan-
tities of currency units to cryptographic public keys, entitling the
owner of the corresponding private key to spend that currency). A
transaction consists of a collection of elements to remove, and a
collection of elements to insert. We assume that each block con-
tains only a single transaction, the number of updates per transac-
tion is constant, the size of the ledger at any time is bounded by
m, and the number of blocks is n. We consider the operation of
validating the entire blockchain since the initial “genesis” block
(the ledger is initially an empty set). Our first validation routine
(see Figure 18, Variation 0) first traverses the blockchain from the
most recent block to the initial block, and then replays each trans-
action in temporal order, at each step updating a local copy of the
ledger. This operation requires O(m + n) space for the V : m for
the local copy of the ledger and n because the recursive operation
is not tail recursive, and so the stack grows to size n. The com-

type distance = float

type separator =
| Tip ×
| Bin of separator × int × distance list × separator

type sep tree =
| STip
| SBin of sep tree × separator × sep tree

let rec member key tree = match tree with
| Tip → false
| Bin (l, k, , r) →

if (key = k) then true
else if (key ¡ k) then member key l
else member key r

let rec lookup key tree = match tree with
| Bin (l, k, a, r) →

if (key = k) then a
else if (key ¡ k) then lookup key l
else lookup key r

let rec smember w tree = match tree with
| STip → false
| SBin (, sep ,) → member w sep

let shortest across u v sep =
let dists = List.map2 (fun x y → x+.y)

(lookup u sep) (lookup v sep) in
List.fold right min dists infinity

let rec shortest u v tree = match tree with
| SBin (l, sep, r) →

let withinL = if smember u l && smember v l
then shortest u v l else infinity in
let withinR = if smember u r && smember v r
then shortest u v r else infinity in
let across = shortest across u v sep in
min across (min withinL withinR)

Figure 17. Planar-Separator Tree (for finding the distance of the
shortest path between two points in a planar graph).

putational time for V is O(n logm) because the cost of each up-
date to the ledger (implemented as a search tree) is O(logm). We
can modify the algorithm to be tail recursive in our framework by
adding an authenticated explicit stack (Variation 1), thus reducing
the V ’s memory requirement to O(m). 6 Finally, by replacing the
ledger with an authenticated set data structure (e.g., as a red-black
tree, as in (Variation 2)), V ’s space requirement is reduced to only
O(logm). 7 The computational cost for P and V is asymptotically
the same (O(n logm)) for each of our variations. However, the size
of the proof stream for Variation 2 (O(n logm)) is larger than for
Variations 0 and 1 (O(n)).

6 An ordinary Bitcoin client does not actually validate the blockchain using
a recursive function requiring an O(n) size stack; however its storage
cost is asymptotically equal to our Variation 0 because it stores the entire
blockchain so that it can act as prover for other nodes. The ordinary Bitcoin
client could be trivially modified to match the performance of our Variation
1 by discarding each block after processing it.
7 If necessary, this could be further reduced to O(1) by using another
explicit stack for set update operations.

14 2013/7/14

www.manaraa.com

(* Variation 0: Ordinary blockchain validation *)
type coin = int
type transaction =

coin list (* coins to remove *) ×
coin list (* coins to insert *)

type ledger = IntSet.t (* Built-in set *)
type block = Genesis | Block of • block × • transaction
let apply tx ldgr =

let after remove = List.fold right
(IntSet.remove) (fst tx) ldgr in

let after insert = List.fold right
(IntSet.add) (snd tx) after remove in

after insert
let rec validate (blk : •block) : ledger =

match unauth blk with
| Genesis → IntSet.empty
| Block(prevblk, tx) →

let ldgr = validate prevblk in
apply (unauth tx) ldgr

(* Variation 1: tail recursive with authenticated stack *)
type stack = E | S of •(•transaction × stack)
let rec build s blk = match unauth blk with
| Genesis → s
| Block(prevblk, tx) → build (S(auth(tx,s))) prevblk

let validate tr blk =
let stk = build E blk in
let rec validate s ldgr =

match s with
| E → ldgr
| S txs → let tx, s = unauth txs in

validate s (apply (unauth tx) ldgr)
in validate stk IntSet.empty

(* Variation 2: authenticated ledger *)
type ledger2 = • Redblack.tree
let apply2 tx ldgr : ledger2 =

let after remove =
List.fold right (Redblack.delete) (fst tx) ldgr

in let after insert =
List.fold right (Redblack.add) (snd tx) after remove

in after insert let rec validate auth newblk =
let stk = build E newblk
let rec validate s dgr =

match s with
| E → ldgr
| S txs → let tx, s = unauth txs in

validate s (apply2 (unauth tx) ldgr)
in validate stk Redblack.empty

Figure 18. Bitcoin blockchain validation model

15 2013/7/14

